Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Radiol Cardiothorac Imaging ; 6(2): e240020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38602468

RESUMO

Radiology: Cardiothoracic Imaging publishes novel research and technical developments in cardiac, thoracic, and vascular imaging. The journal published many innovative studies during 2023 and achieved an impact factor for the first time since its inaugural issue in 2019, with an impact factor of 7.0. The current review article, led by the Radiology: Cardiothoracic Imaging trainee editorial board, highlights the most impactful articles published in the journal between November 2022 and October 2023. The review encompasses various aspects of coronary CT, photon-counting detector CT, PET/MRI, cardiac MRI, congenital heart disease, vascular imaging, thoracic imaging, artificial intelligence, and health services research. Key highlights include the potential for photon-counting detector CT to reduce contrast media volumes, utility of combined PET/MRI in the evaluation of cardiac sarcoidosis, the prognostic value of left atrial late gadolinium enhancement at MRI in predicting incident atrial fibrillation, the utility of an artificial intelligence tool to optimize detection of incidental pulmonary embolism, and standardization of medical terminology for cardiac CT. Ongoing research and future directions include evaluation of novel PET tracers for assessment of myocardial fibrosis, deployment of AI tools in clinical cardiovascular imaging workflows, and growing awareness of the need to improve environmental sustainability in imaging. Keywords: Coronary CT, Photon-counting Detector CT, PET/MRI, Cardiac MRI, Congenital Heart Disease, Vascular Imaging, Thoracic Imaging, Artificial Intelligence, Health Services Research © RSNA, 2024.


Assuntos
Apêndice Atrial , Cardiopatias Congênitas , Radiologia , Humanos , Meios de Contraste , Inteligência Artificial , Gadolínio , Tomografia Computadorizada por Raios X
3.
Radiol Clin North Am ; 62(3): 399-417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38553177

RESUMO

Valvular heart disease (VHD) is a significant clinical problem associated with high morbidity and mortality. Although not being the primary imaging modality in VHD, cardiac computed tomography (CCT) provides relevant information about its morphology, function, severity grading, and adverse cardiac remodeling assessment. Aortic valve calcification quantification is necessary for grading severity in cases of low-flow/low-gradient aortic stenosis. Moreover, CCT details significant information necessary for adequate percutaneous treatment planning. CCT may help to detail the etiology of VHD as well as to depict other less frequent causes of valvular disease, such as infective endocarditis, valvular neoplasms, or other cardiac pseudomasses.


Assuntos
Estenose da Valva Aórtica , Doenças das Valvas Cardíacas , Humanos , Doenças das Valvas Cardíacas/diagnóstico por imagem , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/complicações , Valva Aórtica , Radiografia , Tomografia/efeitos adversos
4.
J Cardiovasc Magn Reson ; 26(1): 101036, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38479457

RESUMO

BACKGROUND: The purpose of this study was to evaluate cardiovascular magnetic resonance (CMR) findings and their relationship to longer-term clinical outcomes in patients with suspected myocarditis following coronavirus disease 2019 (COVID-19) vaccination. METHODS: Consecutive adult patients who underwent clinically indicated CMR for evaluation of suspected myocarditis following messenger ribonucleic acid (mRNA)-based COVID-19 vaccination at a single center between 2021 and 2022 were retrospectively evaluated. Patients were classified based on the revised Lake Louise criteria for T1-based abnormalities (late gadolinium enhancement [LGE] or high T1 values) and T2-based abnormalities (regional T2-hyperintensity or high T2 values). RESULTS: Eighty-nine patients were included (64% [57/89] male, mean age 34 ± 13 years, 38% [32/89] mRNA-1273, and 62% [52/89] BNT162b2). On baseline CMR, 42 (47%) had at least one abnormality; 25 (28%) met both T1- and T2-criteria; 17 (19%) met T1-criteria but not T2-criteria; and 47 (53%) did not meet either. The interval between vaccination and CMR was shorter in those who met T1- and T2-criteria (28 days, IQR 8-69) compared to those who met T1-criteria only (110 days, IQR 66-255, p < 0.001) and those who did not meet either (120 days, interquartile range (IQR) 80-252, p < 0.001). In the subset of 21 patients who met both T1- and T2-criteria at baseline and had follow-up CMR, myocardial edema had resolved and left ventricular ejection fraction had normalized in all at median imaging follow-up of 214 days (IQR 132-304). However, minimal LGE persisted in 10 (48%). At median clinical follow-up of 232 days (IQR 156-405, n = 60), there were no adverse cardiac events. However, mild cardiac symptoms persisted in 7 (12%). CONCLUSION: In a cohort of patients who underwent clinically indicated CMR for suspected myocarditis following COVID-19 vaccination, 47% had at least one abnormality at baseline CMR. Detection of myocardial edema was associated with the timing of CMR after vaccination. There were no adverse cardiac events. However, minimal LGE persisted in 48% at follow-up.

5.
Can Assoc Radiol J ; : 8465371241233228, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486374

RESUMO

The cardiac computed tomography (CT) practice guidelines provide an updated review of the technological improvements since the publication of the first Canadian Association of Radiologists (CAR) cardiac CT practice guidelines in 2009. An overview of the current evidence supporting the use of cardiac CT in the most common clinical scenarios, standards of practice to optimize patient preparation and safety as well as image quality are described. Coronary CT angiography (CCTA) is the focus of Part I. In Part II, an overview of cardiac CT for non-coronary indications that include valvular and pericardial imaging, tumour and mass evaluation, pulmonary vein imaging, and imaging of congenital heart disease for diagnosis and treatment monitoring are discussed. The guidelines are intended to be relevant for community hospitals and large academic centres with established cardiac CT imaging programs.

6.
Can Assoc Radiol J ; : 8465371241233240, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486401

RESUMO

Imaging the heart is one of the most technically challenging applications of Computed Tomography (CT) due to the presence of cardiac motion limiting optimal visualization of small structures such as the coronary arteries. Electrocardiographic gating during CT data acquisition facilitates motion free imaging of the coronary arteries. Since publishing the first version of the Canadian Association of Radiologists (CAR) cardiac CT guidelines, many technological advances in CT hardware and software have emerged necessitating an update. The goal of these cardiac CT practice guidelines is to present an overview of the current evidence supporting the use of cardiac CT in various clinical scenarios and to outline standards of practice for patient safety and quality of care when establishing a cardiac CT program in Canada.

8.
Radiology ; 310(2): e232030, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38411520

RESUMO

According to the World Health Organization, climate change is the single biggest health threat facing humanity. The global health care system, including medical imaging, must manage the health effects of climate change while at the same time addressing the large amount of greenhouse gas (GHG) emissions generated in the delivery of care. Data centers and computational efforts are increasingly large contributors to GHG emissions in radiology. This is due to the explosive increase in big data and artificial intelligence (AI) applications that have resulted in large energy requirements for developing and deploying AI models. However, AI also has the potential to improve environmental sustainability in medical imaging. For example, use of AI can shorten MRI scan times with accelerated acquisition times, improve the scheduling efficiency of scanners, and optimize the use of decision-support tools to reduce low-value imaging. The purpose of this Radiology in Focus article is to discuss this duality at the intersection of environmental sustainability and AI in radiology. Further discussed are strategies and opportunities to decrease AI-related emissions and to leverage AI to improve sustainability in radiology, with a focus on health equity. Co-benefits of these strategies are explored, including lower cost and improved patient outcomes. Finally, knowledge gaps and areas for future research are highlighted.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Radiografia , Big Data , Mudança Climática
9.
Circulation ; 149(6): e296-e311, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38193315

RESUMO

Multiple applications for machine learning and artificial intelligence (AI) in cardiovascular imaging are being proposed and developed. However, the processes involved in implementing AI in cardiovascular imaging are highly diverse, varying by imaging modality, patient subtype, features to be extracted and analyzed, and clinical application. This article establishes a framework that defines value from an organizational perspective, followed by value chain analysis to identify the activities in which AI might produce the greatest incremental value creation. The various perspectives that should be considered are highlighted, including clinicians, imagers, hospitals, patients, and payers. Integrating the perspectives of all health care stakeholders is critical for creating value and ensuring the successful deployment of AI tools in a real-world setting. Different AI tools are summarized, along with the unique aspects of AI applications to various cardiac imaging modalities, including cardiac computed tomography, magnetic resonance imaging, and positron emission tomography. AI is applicable and has the potential to add value to cardiovascular imaging at every step along the patient journey, from selecting the more appropriate test to optimizing image acquisition and analysis, interpreting the results for classification and diagnosis, and predicting the risk for major adverse cardiac events.


Assuntos
American Heart Association , Inteligência Artificial , Humanos , Aprendizado de Máquina , Coração , Imageamento por Ressonância Magnética
10.
Acad Radiol ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38286723

RESUMO

Radiomics uses advanced mathematical analysis of pixel-level information from radiologic images to extract existing information in traditional imaging algorithms. It is intended to find imaging biomarkers related to the genomics of tumors or disease patterns that improve medical care by advanced detection of tumor response patterns in tumors and to assess prognosis. Radiomics expands the paradigm of medical imaging to help with diagnosis, management of diseases and prognostication, leveraging image features by extracting information that can be used as imaging biomarkers to predict prognosis and response to treatment. Radiogenomics is an emerging area in radiomics that investigates the association between imaging characteristics and gene expression profiles. There are an increasing number of research publications using different radiomics approaches without a clear consensus on which method works best. We aim to describe the workflow of radiomics along with a guide of what to expect when starting a radiomics-based research project.

11.
J Cardiovasc Magn Reson ; 26(1): 100995, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38219955

RESUMO

Cardiovascular magnetic resonance (CMR) is a proven imaging modality for informing diagnosis and prognosis, guiding therapeutic decisions, and risk stratifying surgical intervention. Patients with a cardiac implantable electronic device (CIED) would be expected to derive particular benefit from CMR given high prevalence of cardiomyopathy and arrhythmia. While several guidelines have been published over the last 16 years, it is important to recognize that both the CIED and CMR technologies, as well as our knowledge in MR safety, have evolved rapidly during that period. Given increasing utilization of CIED over the past decades, there is an unmet need to establish a consensus statement that integrates latest evidence concerning MR safety and CIED and CMR technologies. While experienced centers currently perform CMR in CIED patients, broad availability of CMR in this population is lacking, partially due to limited availability of resources for programming devices and appropriate monitoring, but also related to knowledge gaps regarding the risk-benefit ratio of CMR in this growing population. To address the knowledge gaps, this SCMR Expert Consensus Statement integrates consensus guidelines, primary data, and opinions from experts across disparate fields towards the shared goal of informing evidenced-based decision-making regarding the risk-benefit ratio of CMR for patients with CIEDs.

12.
Int J Cardiovasc Imaging ; 40(1): 5-14, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37948028

RESUMO

The 2022 AHA/ACC Guidelines for the Diagnosis and Management of Aortic Disease introduced important updates for managing thoracic aorta aortic disease (TAD). In particular, the Guidelines underscore multimodality imaging's role in diagnosis, risk assessment, and monitoring of patients with TAD. This commentary aims to distill key imaging aspects from the Guidelines to provide a concise reference for the cardiovascular imaging community. Primary areas of focus include: (1) The importance of imagers in the multidisciplinary TAD care team, (2) Appropriate imaging techniques along with their strengths and weaknesses, (3) Aortic measurement methods and how aortic size and growth should contribute to TAD risk assessment, (4) Imaging evaluation of acute aortic syndrome. We have also highlighted several areas of ongoing uncertainty and confusion, specifically related to aortic measurement techniques and descriptive terminology. Finally, a perspective on the future of TAD imaging is discussed with a focus on advanced imaging tools and techniques as well as the potential role of artificial intelligence.


Assuntos
Aneurisma da Aorta Torácica , Doenças da Aorta , Humanos , Inteligência Artificial , Valor Preditivo dos Testes , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/terapia , Imagem Multimodal , América do Norte , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/terapia , Aorta Torácica/diagnóstico por imagem
13.
J Cardiovasc Comput Tomogr ; 18(1): 75-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37517984

RESUMO

This consensus document for the performance of Cardiovascular Computed Tomography (CCT) to guide intervention in the right ventricular outflow tract (RVOT) in patients with congenital disease (CHD) was developed collaboratively by pediatric and adult interventionalists, surgeons and cardiac imagers with expertise specific to this patient subset. The document summarizes definitions of RVOT dysfunction as assessed by multi-modality imaging techniques and reviews existing consensus statements and guideline documents pertaining to indications for intervention. In the context of this background information, recommendations for CCT scan acquisition and a standardized approach for reporting prior to surgical or transcatheter pulmonary valve replacement are proposed and presented. It is the first Imaging for Intervention collaboration for CHD patients and encompasses imaging and reporting recommendations prior to both surgical and percutaneous pulmonary valve replacement.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Valva Pulmonar , Cirurgiões , Adulto , Humanos , Criança , Valor Preditivo dos Testes , Tomografia Computadorizada por Raios X , Angiografia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Implante de Prótese de Valva Cardíaca/métodos , Valva Pulmonar/diagnóstico por imagem , Valva Pulmonar/cirurgia , Resultado do Tratamento , Cateterismo Cardíaco/métodos
14.
Heart ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040450

RESUMO

OBJECTIVE: Machine learning (ML) can facilitate prediction of major adverse cardiovascular events (MACEs) in repaired tetralogy of Fallot (rTOF). We sought to determine the incremental value of ML above expert clinical judgement for risk prediction in rTOF. METHODS: Adult congenital heart disease (ACHD) clinicians (≥10 years of experience) participated (one cardiac surgeon and four cardiologists (two paediatric and two adult cardiology trained) with expertise in heart failure (HF), electrophysiology, imaging and intervention). Clinicians identified 10 high-yield variables for 5-year MACE prediction (defined as a composite of mortality, resuscitated sudden death, sustained ventricular tachycardia and HF). Risk for MACE (low, moderate or high) was assigned by clinicians blinded to outcome for adults with rTOF identified from an institutional database (n=25 patient reviews conducted by five independent observers). A validated ML model identified 10 variables for risk prediction in the same population. RESULTS: Prediction by ML was similar to the aggregate score of all experts (area under the curve (AUC) 0.85 (95% CI 0.58 to 0.96) vs 0.92 (0.72 to 0.98), p=0.315). Experts with ≥20 years of experience had superior discriminative capacity compared with <20 years (AUC 0.98 (95% CI 0.86 to 0.99) vs 0.80 (0.56 to 0.93), p=0.027). In those with <20 years of experience, ML provided incremental value such that the combined (clinical+ML) AUC approached ≥20 years (AUC 0.85 (95% CI 0.61 to 0.95), p=0.055). CONCLUSIONS: Robust prediction of 5-year MACE in rTOF was achieved using either ML or a multidisciplinary team of ACHD experts. Risk prediction of some clinicians was enhanced by incorporation of ML suggesting that there may be incremental value for ML in select circumstances.

15.
J Am Coll Radiol ; 20(11S): S351-S381, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38040460

RESUMO

Pediatric heart disease is a large and diverse field with an overall prevalence estimated at 6 to 13 per 1,000 live births. This document discusses appropriateness of advanced imaging for a broad range of variants. Diseases covered include tetralogy of Fallot, transposition of great arteries, congenital or acquired pediatric coronary artery abnormality, single ventricle, aortopathy, anomalous pulmonary venous return, aortopathy and aortic coarctation, with indications for advanced imaging spanning the entire natural history of the disease in children and adults, including initial diagnosis, treatment planning, treatment monitoring, and early detection of complications. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.


Assuntos
Doença da Artéria Coronariana , Cardiopatias , Adulto , Criança , Humanos , Diagnóstico Diferencial , Diagnóstico por Imagem/métodos , Sociedades Médicas , Estados Unidos
16.
Radiol Cardiothorac Imaging ; 5(5): e220292, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38076597

RESUMO

Purpose: To compare combined cardiac fluorine 18 (18F) fluorodeoxyglucose (FDG) PET/MRI with standard-of-care evaluation using cardiac MRI, 18F-FDG PET/CT, and SPECT perfusion imaging in suspected cardiac sarcoidosis (CS) with respect to radiation dose, imaging duration, and diagnostic test performance. Materials and Methods: Consecutive patients with suspected CS undergoing clinical evaluation with cardiac 18F-FDG PET/CT and gated rest technetium 99m sestamibi SPECT perfusion imaging were prospectively recruited between November 2017 and May 2021 for parallel assessment with combined cardiac 18F-FDG PET/MRI on the same day (ClinicalTrials.gov identifier, NCT03356756). Total effective radiation dose and imaging duration were compared between approaches (combined cardiac PET/MRI vs separate cardiac MRI, PET/CT, and SPECT). MRI findings were initially interpreted without PET data, and then PET and late gadolinium enhancement images were fused and interpreted together. Final diagnosis of CS was established using Japanese Ministry of Health and Welfare guidelines. Results: Forty participants (mean age, 54 years ± 14 [SD]; 26 [65%] male participants) were included, 14 (35%) with a final diagnosis of CS. Compared with separate cardiac MRI, PET/CT, and SPECT perfusion imaging, combined cardiac PET/MRI had 52% lower total radiation dose (8.0 mSv ± 1.2 vs 16.8 mSv ± 1.6, P < .001) and 43% lower total imaging duration (122 minutes ± 15 vs 214 minutes ± 26, P < .001). Combined PET/MRI had the highest area under the curve for diagnosis of CS (0.84) with 96% specificity and 71% sensitivity for colocalized FDG uptake and late gadolinium enhancement in a pattern typical for CS. Conclusion: In the evaluation of suspected CS, combined cardiac 18F-FDG PET/MRI had a lower radiation dose, shorter imaging duration, and higher diagnostic performance compared with standard-of-care imaging.Clinical trial registration no. NCT03356756Keywords: Cardiac Sarcoidosis, 18F-FDG PET/MRI, 18F-FDG PET/CT, SPECT Perfusion Imaging, Cardiac MRI, Standard-of-Care Imaging Supplemental material is available for this article. © RSNA, 2023.

17.
Circ Cardiovasc Imaging ; 16(11): e000081, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37916407

RESUMO

Infiltrative cardiomyopathies comprise a broad spectrum of inherited or acquired conditions caused by deposition of abnormal substances within the myocardium. Increased wall thickness, inflammation, microvascular dysfunction, and fibrosis are the common pathological processes that lead to abnormal myocardial filling, chamber dilation, and disruption of conduction system. Advanced disease presents as heart failure and cardiac arrhythmias conferring poor prognosis. Infiltrative cardiomyopathies are often diagnosed late or misclassified as other more common conditions, such as hypertrophic cardiomyopathy, hypertensive heart disease, ischemic or other forms of nonischemic cardiomyopathies. Accurate diagnosis is also critical because clinical features, testing methodologies, and approach to treatment vary significantly even within the different types of infiltrative cardiomyopathies on the basis of the type of substance deposited. Substantial advances in noninvasive cardiac imaging have enabled accurate and early diagnosis. thereby eliminating the need for endomyocardial biopsy in most cases. This scientific statement discusses the role of contemporary multimodality imaging of infiltrative cardiomyopathies, including echocardiography, nuclear and cardiac magnetic resonance imaging in the diagnosis, prognostication, and assessment of response to treatment.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Humanos , American Heart Association , Cardiomiopatias/diagnóstico por imagem , Cardiomiopatias/patologia , Coração , Miocárdio/patologia , Imageamento por Ressonância Magnética
18.
Clin Nucl Med ; 48(12): e570-e571, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882096

RESUMO

ABSTRACT: We present a case of an 84-year-old man with a history of smoking, hypertension, and coronary artery disease with an incidental spiculated left apical pulmonary nodule, suspicious for a stage I non-small cell lung cancer. 18 F-FDG PET/CT performed for staging, which confirmed a small metabolically active pulmonary nodule. As an incidental finding, there was focal FDG uptake in the proximal descending aorta corresponding to a partially thrombosed outpouching of the aortic wall, in keeping with a penetrating atherosclerotic ulcer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Úlcera Aterosclerótica Penetrante , Masculino , Humanos , Idoso de 80 Anos ou mais , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Compostos Radiofarmacêuticos
19.
J Magn Reson Imaging ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37694980

RESUMO

The environmental impact of magnetic resonance imaging (MRI) has recently come into focus. This includes its enormous demand for electricity compared to other imaging modalities and contamination of water bodies with anthropogenic gadolinium related to contrast administration. Given the pressing threat of climate change, addressing these challenges to improve the environmental sustainability of MRI is imperative. The purpose of this review is to discuss the challenges, opportunities, and the need for action to reduce the environmental impact of MRI and prepare for the effects of climate change. The approaches outlined are categorized as strategies to reduce greenhouse gas (GHG) emissions from MRI during production and use phases, approaches to reduce the environmental impact of MRI including the preservation of finite resources, and development of adaption plans to prepare for the impact of climate change. Co-benefits of these strategies are emphasized including lower GHG emission and reduced cost along with improved heath and patient satisfaction. Although MRI is energy-intensive, there are many steps that can be taken now to improve the environmental sustainability of MRI and prepare for the effects of climate change. On-going research, technical development, and collaboration with industry partners are needed to achieve further reductions in MRI-related GHG emissions and to decrease the reliance on finite resources. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...